
Fully automating website deployment

Utilizing a continuous deployment pipeline for a blog

Insinööri (AMK)

2022

Joona “Joodari”

Tiivistelmä

Tekijä(t)

Joona ”Joodari”

Julkaisun laji

Tutkimusseminaarityö

Valmistumisaika

2022

Sivumäärä

12

Työn nimi

Webbi-sivuston julkaisun täysin automatisointi

CD putken hyödyntäminen blogisivustolla.

Tutkinto ja koulutusala

Insinööri (AMK)

Toimeksiantajaorganisaatio (jos opinnäytetyöllä on toimeksiantaja)

Tiivistelmä

Työ kuvaa itse hallituilla palvelimilla blogisivuston automaattisen julkaisun toteutusta.
Tavoitteena on siis rakentaa ja siirtää sivusto versionhallinnasta tuotantopalvelimelle
automaattisesti, niin että sivusto tulee suoraan automaattisesti näkyville sivuston
lähdekoodin päivityksen jälkeen.

Sivuston moniaskelisen julkaisun automaatiolla säästetään aikaa, jolloin blogin
kirjoitukseen jää enemmän aikaa. Avoimen lähdekoodin projekteja käyttämällä
säästämme myös rahaa, sekä vähennämme tarvittavan ylläpidon määrää. Tämä
myös helpottaa olemassa olevaan infrastruktuuriin integrointia, ja auttaa välttämään
riippuvuuksia kolmansiin osapuoliin, jolloin datan käsittelyn voidaan varmistaa
hoituvan yksityisesti ja turvallisesti.

Käytettyihin teknologioihin sisältyy Gitea versionhallintaa varten, Drone CD putkea
varten, Docker konttien käyttöön, OpenSSH webbi-sivun tiedostojen siirtoa varten
SFTP protokollaa käyttäen, sekä nginx web serveriä.

Asiasanat

Automaatio, Avoin lähdekoodi, Ohjelmisto infrastruktuuri, Staattisen webbi-sivuston
rakennus, Jatkuva Integraatio

Abstract

Author(s)

Joona “Joodari”

Type of Publication

Thesis seminar

Published

2022

Number of Pages

12

Title of Publication

Fully automating website deployment

Utilizing a continuous deployment pipeline for a blog

Degree, Field of Study

Engineer (UAS)

Organisation of the client (if the thesis work is commissioned by another party)

Abstract

This thesis describes an automated website publishing pipeline for a blog. The goal is
to have the resulting updated website be visible to the public from a production server
automatically after any modifications have been pushed to it’s source code repository.

Automating away the tedious steps of publishing a blog site saves time, allowing the
writer to focus on the actual writing. Utilizing Open Source technologies for the
pipeline reduces costs and required maintenance for the system. It is also easier to
integrate into preexisting infrastructure, and since it avoids reliance on third parties,
allowing the data to be managed in a private and secure way.

The technologies presented here include Gitea for versioning control, Drone for
Continuous Deployment, Docker for containerization, OpenSSH for accepting files in
the deployment server via SFTP, and nginx for the production web server.

Keywords

Automation, Open Source, Software Infrastructure, Building a static website,
Continuous Integration

CONTENTS

1 Introduction..1

2 Technical details..2

2.1 Infrastructure...2

2.2 Source control...2

2.3 Continuous Deployment and Integration..3

2.4 Deployment service.. 4

2.5 Deployment web server..5

2.6 Overview of the pipeline...5

3 Pipeline data source.. 7

4 Pipeline Target.. 8

4.1 Deployment web server..8

4.2 Deployment listener service..8

5 Continuous deployment...9

5.1 Source control connection..9

5.2 Build steps.. 9

6 Summary...10

References...11

Attachments

Attachment 1. switch-deploy-watch.sh

Attachment 2. switch-deploy.sh

Attachment 3. .drone.yml

1

1 Introduction

There is clear demand for static websites. There are many services that offer a build pipe-

line from a writer friendly source format to automate publishing the website to production

(Cloudflare). Though taking care of all the infrastructure is advertised as a benefit of these

services, it’s also their downside, since they are heavily tied to their specific vendors’ infra-

structure and services (Github). The goal of this paper is designing and implementing a

more vendor neutral publishing pipeline that’s secure, uncomplicated, performant, and

scalable.

Having the whole publishing process automated reduces manual labor, and reduces risks

of problems appearing. It also offers additional benefits, like the publishing process being

a lot faster than if it was to be done manually, allowing changes to be deployed faster.

(Sullivan 2014)

The pipeline shouldn’t rely on third parties, so that it can be modified and adapted even for

customers with strict data security and privacy requirements. This can be helpful as the

communications and technology industry has to take privacy and security matters more

seriously due to legislation like the European Union’s General Data Protection Regulation

for example.

The plan is for the pipeline to start at a git repository, which is an industry standard for

versioned source control. It shall contain the blog site in a form that’s suitable for writers,

but which will require some processing to turn into the actual static website. At the end of

the planned pipeline, the goal is for the generated static website to have ended up the

production server, where the web server will simply serve the site’s static files to visitors

over HTTPS.

To implement the pipeline, popular Open Source technologies will be utilized, such as

OpenSSH, Gitea, Docker, Drone and nginx, which implement standard protocols such as

HTTPS, Git, SSH, and SFTP.

2

2 Technical details

2.1 Infrastructure

Since one of the goals is to not depend on external vendors, the servers can’t be tied to

be required to be ran by a third party. Having services tied to specific machines also isn’t

optimal, as it makes scaling the whole system harder. Docker containers can be used to

abstract away which machine something is running on to allow for better scalability of the

services, while also not giving up performance, which would be the case with virtual ma-

chines (Vase 2015, 15).

An assumption that the services have network connections to reach each other will be

made, as the specifics of the networking isn’t too relevant to this paper. In this setup it is

achieved via the servers being publicly reachable over the internet, and DNS names that

point to each service that needs to be resolvable and communicating with from another

service. Additionally, some services are defined in the same docker-compose file. This

allows them to be able to connect to each other more easily using the services names

which Docker Compose sets up for their networks (Docker).

Ultimately though, the goal is for the physical infrastructure to not matter much, and be

easy to change and scale. Although in this setup only a few real servers are used, there’s

no reason it couldn’t be scaled up to hundreds of servers with minor tweaks. Though the

uploading step would need to then take into account multiple possible production services

which is outside the scope of a simple blog site. Instead, if further scaling for a static blog

site was required, the deployment and web server could be hidden behind HTTP caching

services and reverse proxies, like nginx or Varnish for example (Pyhäranta 2019, 14).

2.2 Source control

The source for the website has to be stored somewhere so that writers can access and

edit it. Git is a common tool used for storing software source code, and it allows for multi-

ple collaborators to edit the contents at the same time. Although git is primarily aimed to-

wards developers, it nowadays has simple to use graphical user interfaces, making it suit-

able enough for blog editors to use as well. Using git provides the added benefit that the

full edit history of the files will be available, making for easier tracking of revision changes

of posts and edit dates.

There are more than a few ways to synchronize the git repository’s state. Gitea is one

such way, and it offers a web view, user accounts to limit access, and webhooks for the

Continuous Deployment to use.

3

The source code of the website will all be stored in the same repository. This includes the

sass style and HTML template files, and the actual contents of the blog posts, which are

the markdown files, as is standard practice (Hugo a). It’s assumed that writers know to

navigate to the markdown files, and that additional pull request checks can be enforced in

Gitea in case unwanted modifications to the rest of the style needs to be prevented.

2.3 Continuous Deployment and Integration

Continuous Deployment is the process of automating publishing changes. It’s often also

referenced to as Continuous Delivery or Continuous Integration, though those are often

more specifically about testing the code with integration tests and checking that it builds,

instead of delivering the result of the changes (Pittet).

The goal of the Continuous Deployment pipeline is to take the source of the blog site,

build the web browser viewable version of it to static files, and then move that result to the

destination web server. As the blog site uses Hugo, building the site is as simple as run-

ning the build command in the Hugo docker container, which will generate the static web-

site’s files (Hugo b).

Drone can be used to manage and run the Continuous Deployment pipelines, and it works

well with Docker. It also is the only Continuous Integration and Deployment software

which both supports Gitea and is supported by Gitea officially in their documentations.

Although the setup could be done with other similar software as well, like Jenkins for ex-

ample.

4

Drone is split into the actual Drone management server and the runners, as can be seen

in the above illustration. The Drone server is the part that communicates with the source

control service, and manages the tasks. Runners as their name suggests, are responsible

for running the Drone pipelines, and communicating back the the Drone server. The

Drone server will take care of distributing tasks across runners if there’s multiple available,

so scaling the system is easy if there’s ever need for more runners. A single Drone docker

runner instance will be enough for this setup though, as only running a single blog building

and publishing pipeline is required at a time.

2.4 Deployment service

The CD pipeline needs to be able to push the static website files to the publicly facing web

server. However, doing so securely across different docker containers and possibly differ-

ent physical machines complicates things. Some kind of a service needs to be setup on

the same machine as the web server, like seen from the last section’s diagram. It will han-

dle accepting the files from the Continuous Deployment service. It can possibly be defined

in the same docker-compose file as the web server for simplicity.

There are multiple suitable file transfer protocols. SFTP has the broadest support and

simplicity. It’s also very reliable and not as prone to possibly being abused if an attacker

gains access as scp/ssh/rsync possibly could be. The standard server used for it is

OpenSSH, which can be configured to only allow SFTP to keep the system secure and

not allow arbitrary command execution (OpenBSD).

Figure 1. Container connections with runner scaling

5

Additional care still needs to be taken care of with file permissions and access though.

Tools such as chroot can be used to further restrict the SFTP user account, so that even

in the case of a Continuous Deployment pipeline compromise, only the resulting static

website can be modified whilst the rest of the production system will be able to resist mod-

ification attempts.

2.5 Deployment web server

A web server capable of servicing static files is required, for example nginx or Apache2.

Note that unlike most other services described in this thesis, the web server has to be on

the same physical host machine as the deployment service, since it needs to able to ac-

cess the files from the deployment service via a shared docker volume.

Using a standard web server and a static website has the benefit that the web request

responses can be aggressively cached. Compared to WordPress and most other blogging

solutions which require running more code to respond to each request, the approach also

improves security, as static sites minimize the attack surface to only the web server, And

since the most popular web servers are so widely used, and thus battle tested, that they

are not likely to have critical security flaws. (Petersen 2016, 16.)

2.6 Overview of the pipeline

The flow of the planned pipeline starts at the source code repository service, Gitea. When

an update gets pushed to the repository by a writer, Gitea will inform the Drone server

with a webhook, which is just a standard HTTPS REST JSON request.

As the pipeline diagram illustrates, the Drone server will then wait for a suitable runner to

be available to run the job, and send a message to it to start processing the pipeline once

it’s available. The runner will then pull in the code from Gitea using the authentication that

the Drone server provided in the pipeline start message, build the website, and then con-

Figure 2. Pipeline UML sequence diagram

6

tact the deployment service. Jumping forward a bit in the diagram, after the upload to the

deployment service is done, the runner will signal to the Drone server that the pipeline has

reached it’s completion, which will send the signal to Gitea so that Gitea can display the

pipeline status on the repository.

On the deployment end, the deployment service will receive the files via OpenSSH’s

SFTP, and it will handle replacing the files in the directory that the web server has been

configured to serve static files from once the transfer is complete. Note that in the diagram

the only displayed request happens after the site has been swapped to the newly up-

loaded one, though that it’s assumed that readers may be constantly requesting the files

from nginx.

7

3 Pipeline data source

Installing Gitea with docker-compose is relatively simple, and can be done just by copying

the Docker compose configuration file and starting the containers (Gitea). The rest of the

standard setup can be done after connecting to it’s web server from a web browser.

Next the OAuth2 application for the CD service needs to be created from Gitea’s settings

menu. The application name can be set to whatever, but the redirect URI should resolve

to the login page of the Drone server instance.

In the above image it’s set to https://ci.example.org/login, which would mean that the CI

service is planned to be resolvable from the ci.example.org domain via a DNS lookup. The

Client ID and Client Secret need to be stored for later when the CD service is being set

up.

The OAuth2 application will allow the Drone server to use the Gitea instance for user au-

thentication. When an user authenticates and grants the Drone server access to their ac-

count, Drone can then proceed to add the required webhooks to the repositories that the

user enables processing CD pipelines for. The webhooks are configured by Drone so that

it gets notified whenever a change happens in the repository that may trigger a pipeline

run.

Figure 3. Gitea OAuth2 configuration

8

4 Pipeline Target

4.1 Deployment web server

Support for docker is included by the nginx team, and setting it up requires running only a

few commands (Nelson and Garcia 2021). Though as per usual, in this setup the the ports

and volumes will be defined in the docker compose configuration file for easier manage-

ment.

Thought needs to be put into the user and group that nginx will run as, as the files will

need to be accessible to it. Any extra privileges should be dropped though for security

reasons, though nginx does quite a lot of it by default already. However at least basic

things such as maximum connection timeout limits should likely be set to lower values, as

not overloading the origin server is a priority.

4.2 Deployment listener service

OpenSSH can be easily installed into most base system images. To avoid reinventing the

wheel, the `atmoz/sftp` docker image can be used as it already includes a strict configura-

tion with chroot enabled for the users. It also already contains handy scripts for automati-

cally creating the users, and starting more custom scripts. The user creation script reads a

simple configuration file, and runs basic Linux commands to create the users with the ssh

keys added to them.

The script in the attachment 1 file will be the part that’s actually responsible for awaiting

for completed file transfers, calling the attachment 2 script file which will handle switching

over the website’s files and while also correcting the file permissions. This enables being

able to give very minimal permissions to the SFTP uploader users and the web server

user. It also avoids issues with partial file transfers, and always cleans up any leftover

files, as the folder is completely replaced whenever a new build job indicates that it’s up-

load is done by writing it’s version to a specific file.

The deployment directory should be mounted from the host system to the same folder that

was setup in the web server container image. This is required so that the web server can

access the files.

9

5 Continuous deployment

5.1 Source control connection

The drone server installation is quite simple, and well documented (Drone a). After creat-

ing random shared secret for the Drone server and the runners, the OAuth2 application

client id and secret from earlier when Gitea was setup need to be defined using docker

environment variable definitions.

Additionally the Gitea server’s URI needs to be defined, as well as the drone server’s own

host. The URIs should be resolvable from the other services that need them. After having

defined all the options in the compose file, the Drone server can be started. Then in a web

browser, it can be logged into, and the pipeline can be enabled for the target repository.

5.2 Build steps

The docker Drone runner setup is easier than the main Drone management service, as it

only requires the shared secret and the host of the Drone server (Drone b). The runner

will automatically connect to the server, and run any jobs that the server assigns to it.

The build step will use the official Hugo docker image as planned. After the building step

is done, any container with SFTP can be used to upload the site’s files. After the sites files

have been successfully uploaded, the last uploaded file should be written to a specific

location with the upload folder name, so that the deployment service knows to deploy the

site from there. The configuration for the Drone pipeline is stored in the repository in

a .drone.yml file. An example of this configuration can be found from the attachment 3.

Now that everything is setup, doing a push to the repository this all was setup for, the re-

sult is that the above pipeline is ran. After a slight delay after the push the resulting web-

site shows up on the production site. The slight delay can be explained by the data being

moved between the different servers and containers, and the build and deployment pro-

cesses taking a short while to initialize.

Figure 4. Drone graph view of a simple automation pipeline

10

6 Summary

With the implemented automated deployment pipeline, a fully automated system that re-

duces manual labor and speeds up updating of a statically built site has been achieved,

where just pushing code to the repository leads to the live production website being auto-

matically updated. And it’s been fully done with open source technologies and protocols,

in a fashion which allows easily tailoring the pipeline for any current or possible future re-

quirements.

The implementation also avoids any vendor lock-in. The container approach with proven

technologies also ensures that the pipeline implementation stays relatively low mainte-

nance to keep running, and can be scaled on the go as needed.

It’s still also worth comparing the implementation to GitHub pages and Cloudflare pages,

which were mentioned in the introduction. Generally this deployment pipeline is as easy to

use, but it does involve the covered more complicated first time manual setup. Additionally

there’s a trade-off between the flexibility and configuration of the implemented pipeline,

versus the simplicity of the aforementioned solutions.

Another big advantage of the vendor specific automation solutions for organizations might

be the support and documentation, and not having to think about the maintenance at all.

What this pipeline offers in exchange though is full control of the data, which enables po-

tential use in domains with potentially private information which can’t legally be shared to

most third parties, like in healthcare for example.

Overall, the goals of the pipeline implementation can be considered to have been met.

The automation pipeline provides the benefits of the simpler vendor specific solutions,

while avoiding their downsides, with just a bit more initial setup and minimal maintenance

over time.

11

References

Cloudflare. Cloudflare Pages. Website. Referenced on 8.10.2022. Available at

https://pages.cloudflare.com/

Docker. Networking in Compose. Documentation. Referenced on 8.10.2022. Available at

https://docs.docker.com/compose/networking/

Drone a. Gitea. Documentation. Referenced on 9.10.2022. Available at

https://docs.drone.io/server/provider/gitea/

Drone b. Install on Linux. Documentation. Referenced on 9.10.2022. Available at

https://docs.drone.io/runner/docker/installation/linux/

Gitea. Installation with Docker. Documentation. Referenced on 8.10.2022. Available at

https://docs.gitea.io/en-us/install-with-docker-rootless/

GitHub. About GitHub Pages. Documentation. Referenced on 8.10.2022. Available at

https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages

Hugo a. Directory Structure. Documentation. Referenced on 8.10.2022. Available at

https://gohugo.io/getting-started/directory-structure/

Hugo b. Installing Hugo. Documentation. Referenced on 8.10.2022. Available at

https://gohugo.io/getting-started/installing/

Nelson, R. Garcia, A. Deploying NGINX and NGINX Plus with Docker. Blog post. nginx.

Referenced on 9.10.2022. Available at https://www.nginx.com/blog/deploying-nginx-nginx-

plus-docker/

OpenBSD. sshd_config(5). Documentation. Referenced on 8.10.2022. Available at

https://man.openbsd.org/sshd_config

Petersen, H. 2016. From Static and Dynamic Websites to Static Site Generators.

University of Tartu. Bachelor’s thesis. Available at

https://dspace.ut.ee/bitstream/10062/56282/1/thesis.pdf

Pittet, S. Continuous integration vs. delivery vs. deployment. Atlassian. Guide. Referenced

on 8.10.2022. Available at

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-

delivery-vs-deployment

Pyhäranta, M. 2019. Vapaan ohjelmiston HTTP-kiihdyttimien vaikutus verkkosivujen

suorituskykyyn. Haahe-Helia ammattikorkeakoulu Oy. Research report. Available at

https://markuspyharanta.com/wp-content/uploads/2019/02/Tutkimusraportti-Markus-

Pyh%C3%A4ranta.pdf

https://markuspyharanta.com/wp-content/uploads/2019/02/Tutkimusraportti-Markus-Pyh%C3%A4ranta.pdf
https://markuspyharanta.com/wp-content/uploads/2019/02/Tutkimusraportti-Markus-Pyh%C3%A4ranta.pdf
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://dspace.ut.ee/bitstream/10062/56282/1/thesis.pdf
https://man.openbsd.org/sshd_config
https://www.nginx.com/blog/deploying-nginx-nginx-plus-docker/
https://www.nginx.com/blog/deploying-nginx-nginx-plus-docker/
https://gohugo.io/getting-started/installing/
https://gohugo.io/getting-started/directory-structure/
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages
https://docs.gitea.io/en-us/install-with-docker-rootless/
https://docs.drone.io/runner/docker/installation/linux/
https://docs.drone.io/server/provider/gitea/
https://docs.docker.com/compose/networking/
https://pages.cloudflare.com/

12

Sullivan, J. 2014. Consider Deployment Automation to Add Business Value Faster. Article.

Referenced on 7.11.2022. Available at https://www.cmcrossroads.com/article/consider-

deployment-automation-add-business-value-faster

Vase T. 2015. Advantages of Docker. University of Jyväskylä. Bachelor’s thesis. Available

at http://urn.fi/URN:NBN:fi:jyu-201512093942

http://urn.fi/URN:NBN:fi:jyu-201512093942
https://www.cmcrossroads.com/article/consider-deployment-automation-add-business-value-faster
https://www.cmcrossroads.com/article/consider-deployment-automation-add-business-value-faster

Attachment 1. switch-deploy-watch.sh

#!/bin/sh

while true

do

touch /last-deploy-watch-run

sleep 30

find /home/*/upload/build_number.txt -cnewer \

./last-deploy-watch-run -exec /usr/local/bin/switch-deploy.sh {} \;

done

Attachment 2. switch-deploy.sh

#!/bin/sh

set -e

BUILD_VERSION_FILE_PATH="$1"

BUILD_VERSION="$(head --lines=1 "$BUILD_VERSION_FILE_PATH")"

if [! -z "${BUILD_VERSION##*[!0-9]*}"]; then

 echo "Deploying $BUILD_VERSION_FILE_PATH $BUILD_VERSION"

else

 echo "Build version needs to be an int"

 exit 1

fi

BASE_DIR="$(dirname "$BUILD_VERSION_FILE_PATH")"

BASE_DIR="$(realpath "$BASE_DIR"/..)"

UPLOAD_DIR="$BASE_DIR/upload/$BUILD_VERSION"

TMP_DIR="$(mktemp -d)"

mv "$BASE_DIR/deploy"/* "$TMP_DIR/"

mv "$UPLOAD_DIR"/* "$BASE_DIR/deploy/"

rm -r "$TMP_DIR" "$UPLOAD_DIR"

Attachment 2. .drone.yml

kind: pipeline

type: docker

name: default

steps:

- name: build

 image: klakegg/hugo:ext-alpine-ci

 commands:

 - hugo --minify –enableGitInfo && echo "$DRONE_BUILD_NUMBER" > build_number.txt

- name: deploy

 image: alpine:latest

 commands:

 - apk add openssh && echo "$SSH_KEY" > "priv.key" && chmod 0600 "priv.key"

 - mkdir -p "$HOME/.ssh" && echo "$DEPLOY_IDENTITY" > "$HOME/.ssh/known_hosts"

 - chmod 600 "$HOME/.ssh/known_hosts"

 - echo "mkdir upload/$DRONE_BUILD_NUMBER" > deploy.txt

 - echo "put -R public/* upload/$DRONE_BUILD_NUMBER" >> deploy.txt

 - echo "put build_number.txt upload/build_number.txt" >> deploy.txt

 - echo "bye" >> deploy.txt

 - echo "$DRONE_BUILD_NUMBER" > build_number.txt

 - sftp -i "priv.key" -b deploy.txt -P "$DEPLOY_PORT" "$DEPLOY_USERNAME@$DE-
PLOY_HOST"

 environment:

 SSH_KEY:

 from_secret: deploy_ssh_key

 DEPLOY_USERNAME:

 from_secret: deploy_username

 DEPLOY_HOST:

 from_secret: deploy_host

 DEPLOY_IDENTITY:

 from_secret: deploy_identity

 DEPLOY_PORT:

 from_secret: deploy_port

	1 Introduction
	2 Technical details
	2.1 Infrastructure
	2.2 Source control
	2.3 Continuous Deployment and Integration
	2.4 Deployment service
	2.5 Deployment web server
	2.6 Overview of the pipeline

	3 Pipeline data source
	4 Pipeline Target
	4.1 Deployment web server
	4.2 Deployment listener service

	5 Continuous deployment
	5.1 Source control connection
	5.2 Build steps

	6 Summary
	References

